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Abstract- Search queries on biomedical databases, often return 
a large number of results, only some part of data is relevant to 
the user. Results categorization and ranking for biomedical 
databases is the focus of this work. The general way to 
organize biomedical data results is according to the MeSH 
annotations. MeSH is used by medical database for 
comprehensive searching of the query results. To alleviate the 
information overload problem Ranking and Categorization 
can be combined. We present the BioNav system, a novel 
search interface that enables the user to navigate large 
number of query results by organizing them using the MeSH 
concept hierarchy. The efficiency of the results fetched by the 
user can be improved by using Data Mining Algorithms. 
Presently, few algorithms are being considered to provide the 
data to the fetched queries. A new approach for evaluating the 
relevant information for the query is done by Apriori 
Algorithm. Apriori gives the relevant information to the user 
by which the user can have easy way to access the information 
needed. 

Index Terms – MeSH, BioNav, efficient results , effectiveness 

I. INTRODUCTION 
Data mining is extraction of data which is useful 

and it is extracted from different types of databases like 
biomedical, web, domain specific databases, etc. Ranking 
and Categorization on extracted query results helps the user 
to fetch quality data from the database, helps in increasing 
efficiency of the database. A user might consider the 
effectiveness for a piece of information appropriate for one 
task but not sufficient for another task. Accuracy is 
subjective, as a second less quality concerned user might 
consider the quality of the same piece of information 
appropriate for both tasks. Which quality dimensions are 
relevant and which levels of quality are required for each 
dimension is determined by the specific task .The 
biomedical database, on which the search engine operates, 
contains over 18 million citations.  

The user submits an initially broad keyword- based 
query that typically returns a large number of results with 
concept hierarchies associated with MeSH concept as 
hierarchy. Biologists, chemists, medical and health 
scientists and researchers will search their data from their 
domain literature which need to be efficient and accurate. 
For keyword search system will use citation id which will 
be annotated with concept hierarchy [1].  

The efficiency of the search results from the search 
engines varies as information providers have different 
levels of knowledge and different intentions. Users of query 
based systems are therefore confronted with the 
increasingly difficult task of selecting the efficient results 

from the vast amount of web information the can b accepted. 
The web search helps in the resulting of the efficient and 
accurate result. 

In order to optimize, the system uses concept 
hierarchies for navigation of query results and opt edge cut 
algorithm to minimize the cost and heuristic edge cut 
algorithm to increase the efficiency of query navigation in 
the biomedical database. The combination of both ranking 
and categorization will improve the efficiency and 
effectiveness of the query results. By using Apriori 
algorithm the efficiency will be increased resulting in the 
accurate result. It increases the performance in retrieving 
efficient query results.  Quality is provided information and 
ratings of the website [9]. This will increase efficiency and 
provide effectiveness, time saving and reduce cost of search 
and provides to get expected trusted results.  
A. Optimization of Search query Results: 

Optimizing of the query results fetched by the user 
when a query is placed on the database is done by different 
techniques using ranking and categorization. Ranking is 
done based on citation count, citation relevance, and by date. 
Categorization is done by using concept hierarchies, 
navigation tree. Partitioning is used for categorization and 
the k partitioning is the linear partitioning method that is 
done based on the weight of the node in the tree i.e., 
navigation tree and the active tree is generated where the 
clustering is done and the dynamic pruning is also done to 
save the time and the cost of query processing. Based on k 
value the partitioning is done with the less number of k sub 
groups that is less than the more weight of the tree.  

The clustering is the technique which is used in 
dividing the data into subsets i.e., categorizing the results. 
The data can be supervised or unsupervised data i.e., 
training set are already defined or training sets are not 
defined previously, for clustering or grouping of data the k 
value or the number of the sets should be known at the 
starting of the clustering or grouping is to be done . 
The k means clustering is done based on mean distance for 
partitioning medians clustering  is based on median distance 
and k medics clustering are four different techniques used 
for clustering the data.  

II. FRAMEWORK AND BIONAV OVERVIEW

The concept hierarchy is the starting point of the 
framework and is defined as follows. 
Definition 1 (Concept Hierarchy): A Concept Hierarchy is 
a labeled tree consisting of a set of concept nodes, a set  of 
edges and is rooted at node . Each node  has a label and a 
unique identifier id. According to the semantics of the 
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MeSH concept hierarchy, the label of a child concept node 
is more specific than the one of its parent. This also holds 
for most concept hierarchies. 

Once the user issues a keyword query, 
PubMed−BioNav uses the Entrez Programming Utilities 
(eUtils) −returns a list of citations, each associated with 
several MeSH concepts. 

BioNav reduces the size of the initial navigation 
tree by removing the nodes with empty results lists, 
ancestor/descendant relationships are being preserved. The 
resulting structure is defined as follows. 
Definition 2 (Navigation Tree): A Navigation Tree is the 
maximum embedding of an initial navigation tree such that 
no node is labeled with an empty results list, excluding the 
root (in order to maintain the tree structure and avoid the 
creation of a duplication. The maximum embedding of the 
initial navigation tree is recursively computed in a single 
depth-first left-to-right traversal. If a node  has an empty 
results list , then replace  with its children node.  

The above procedure reduces the size of the initial 
navigation tree, but the structure is still too big (3,940 nodes 
for query “prothymosin”) to simply display it to the user or 
let her navigate it, especially if her query is of exploratory 
nature. 

BioNav minimizes the user’s effort to reach the 
desired citations in the navigation tree by expanding in a 
way that minimizes the expected overall user navigation 
cost. 

 
III. SYSTEM ARCHITECTURE AND IMPLEMENTATION 

The BioNav system architecture is shown in Fig. 7. 
There are more than 48,000 concept nodes in the hierarchy. 
The architecture results in the efficient and accurate results 
based on the query processing and query optimization. 
From this architecture, the query is processed from the 
BioNav web interface. 

 
Fig. 7 BioNav System Architecture 

Then, the BioNav database is populated with the 
associations of the MEDLINE citations to MeSH concepts. 
These associations are not directly provided by the Entrez 
Programming Utilities (eUtils), so we had to implement the 
following method to infer these associations. For each 
concept in the MeSH hierarchy, we issued a query on 
PubMed using the concept as the keyword. For each 
citation ID in the query result, we added a tuple concept, 
citationID � to a table in the BioNav database. 
Alternatively, we could determine the associations by using 
the MeSH concepts that each citation is annotated with in 
the MEDLINE database. This information is available 
through eUtils. In this case though, the navigation trees of 
BioNav would not be very informative, since each citation 
is annotated with 20 concepts on average in MEDLINE, 
while the PubMed indexing associates each citation with 
approximately 90 concepts on average (and include the 20 
from MEDLINE.) restrictions on the number of queries that 
can be executed within a certain period of time, it took 
almost 20 days to collect all the � concept, citationID  
tuples. In the end, there were almost 740 million such tuples. 
To improve the selection queries on this table, we de-
normalized it by concatenating all concepts associated with 
each citation into a comma-separated list, that is: 
Citation Id, Conpcet1, Concept 2 

On-Line Operation Upon receiving a keyword 
query from the user, BioNav executes the same query 
against the MEDLINE database and retrieves only the IDs 
(PubMed Identifiers) of the citations in the query result. 
This is done using the ESearch utility of the Entrez 
Programming Utilities (eUtils). 

 
IV. APRIORI ALGORITHM: 

We can compute the optimal cost by recursively 
enumerating all possible sequences of valid Edge Cuts, 
starting from the root and reaching every concept in the 
navigation tree, computing the cost for each step and taking 
the minimum. However, this algorithm is also prohibitively 
expensive. Instead we propose an alternative algorithm 
Apriori Algorithm that makes use of the dynamic 
programming technique to reduce the computation cost. 
Apriori Algorithm is mainly used for the providing the 
efficient and accurate result. 
Algorithm Used 
 
 Apriori Algorithm Pseudo code 

 
Procedure Apriori (T, minSupport)  
{  
//T is the database and minSupport is the minimum 
support 
L1= {frequent items}; 
for (k= 2; Lk-1!=Φ; k++)  
{ 
Ck= candidates generated from Lk-1 
//that is Cartesian product Lk-1 x Lk-1 and 
eliminating any k-1 size itemset that is not 
//frequent 
for each transaction t in database do{ 
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#increment the count of all candidates in Ck that 
are contained in t 
Lk = candidates in Ck with minSupport 
}//end for each 
}//end for 
return UkLk; 
} 

 
Explanation 
Support of an Item Set 
Let S be an item set and T the multiset of all transactions 
under consideration. Then the absolute support (or simply 
the support) of the item set S is the number of transactions 
in T that contain S. Likewise, the relative supportof  S is 
the fraction (or percentage) of the transactions in T which 
contain S. 
More formally, let S be an item set and U = { X∈T | S⊆t } 
the bag/multiset of all transactions in T that have S as a 
subset (i.e. contain all of the items in S and possibly some 
others). Then 
suppabs(S) = |U|  = |{ X∈T | S⊆t }| 
is the absolute support of S and 
supprel(S) = (|U| / |T|) *100% 
is the relative support of S. Here |U| and |T| are the number 
of elements in U and T, respectively. 
The goal of frequent item set mining is to find all item sets 
(that is, all subsets of the item base) that occur in the given 
bag/multiset of transactions with at least a user-
specified minimum support suppmin. Such item sets are 
calledfrequent item sets. 
The default value for the minimum support in my Apriori 
program is 10% (the percentage indicates implicitly that it 
refers to relative support). This value can be changed with 
the option -s. Note that the argument to this option is 
interpreted as a percentage if it is positive, but if it is 
negative, it is interpreted as an absolute number (number of 
transactions) rather than a percentage. That is, -s20 means a 
minimum relative support of 20%, while -s-20means a 
minimum absolute support of 20 transactions. 
Confidence of an Association Rule 
If we search for association rules, we do not want just any 
association rules, but "good" association rules. To measure 
the quality of association rules,  the inventors of the Apriori 
algorithm, introduced the confidence of a rule. The 
confidence of an association rule R = "X → Y" (with item 
sets X and Y) is the support of the set of all items that 
appear in the rule (here: the support of S = X ∪ Y) divided 
by the support of the antecedent (also called "if-part" or 
"body") of the rule (here X). That is, 

conf(R) =  
supp(X ∪ Y) 

 
supp(X) 

(Note that it does not matter whether the confidence is 
computed from the absolute or the relative support of an 
item set, as long as the same support type is used in both the 
numerator and the denominator of the fraction.) 
More intuitively, the confidence of a rule is the number of 
cases in which the rule is correct relative to the number of 
cases in which it is applicable. If the rule is applicable, it 
says that the customer can be expected to buy cheese. But 

he/she may or may not buy cheese, that is, the rule may or 
may not be correct (for this customer). Naturally, we are 
interested in how good the prediction of the rule is, that is, 
how often its prediction that the customer buys cheese is 
correct. The rule confidence measures this: it states the 
percentage of cases in which the rule is correct. It states this 
percentage relative to the number of cases in which the 
antecedent holds, since these are the cases in which the rule 
makes a prediction that can be true or false. If the 
antecedent does not hold, then the rule does not make any 
prediction, so these cases are excluded. 
Rules are reported as association rules if their confidence 
reaches or exceeds a given lower limit (minimum 
confidence; to be specified by a user). That is, we look for 
rules that have a high probability of being true: we look for 
"good" rules, which make correct (or very often correct) 
predictions. My Apriori program always uses a minimum 
confidence to select association rules. The default value for 
the minimum confidence is 80%. This value can be changed 
with the option -c. (Note that for the minimum confidence, 
the argument is always interpreted as a percentage. 
Negative values cause an error message, because there is no 
"absolute confidence".) 
In addition to the rule confidence, my Apriori  program lets 
you select from several other (additional) rule evaluation 
measures, which are explained below, but it will also use 
rule confidence. If you want to rely entirely on some other 
measure, you can do so by setting the minimal rule 
confidence to zero. (Attention: If you have a large number 
of items, setting the minimal rule confidence to zero can 
result in very high memory consumption. Therefore: use 
this possibility with a lot of care, if at all.) 
Support of an Association Rule 
The support of association rules may cause some confusion, 
because I use this term in a different way do. For them, the 
support of an association rule "A and B → C" is the support 
of the set S = { A, B, C }. This may be fine if rule 
confidence is the only evaluation measure, but it causes 
problems if some other measure is used. For these other 
measures it is often much more appropriate to call the 
support of the antecedent of the association rule, that is, the 
support of X = { A, B } in the example above, the support 
of the association rule. 
The rule support can be used to filter association rules by 
stating a lower bound for the support of a rule (minimum 
support). This is equivalent to saying that you are interested 
only in such rules that have a large enough statistical basis 
(since my Apriori program uses the term "support" in my 
interpretation and not in the one used by  The default value 
for this support limit is 10%. It can be changed with the 
option -s. Note that the argument, if positive, is interpreted 
as a percentage. If, however, the given argument is negative, 
it is interpreted as an absolute number (number of 
transactions) rather than a percentage. 
The minimum support is combined with the minimum 
confidence to filter association rules. That is, my Apriori 
program generates only association rules, the confidence of 
which is greater than or equal to the minimum 
confidenceand the support of which is greater than or equal 
to the minimum support. 
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V. NAVIGATION AND COST MODEL 
The navigation model of BioNav is formally 

defined in this section. Then the navigation cost model is 
presented, which is used to devise and evaluate our 
algorithms in later sections. Navigation Model After the 
user issues a keyword query, BioNav initiates a navigation 
by constructing the initial active tree (which has a single 
component tree rooted at the Mesh root) and displaying its 
root to the user. Subsequently, the user navigates the tree by 
performing one of the following actions on a given 
component subtree rooted at concept node: 

 
 
1. EXPAND: The user clicks on the”>>>” hyperlink next to 
node and causes an Edge Cut operation to be performed on 
it, thus revealing a new set of concept nodes. 
2. SHOWRESULTS: By performing this action, the user 
sees the results list of citations attached to the component 
subtree. 
3. IGNORE: The user examines the label of concept node, 
ignores it as unimportant and moves on to the next revealed 
concept. 
4. BACKTRACK: The user decides to undo the last Edge 
Cut operation. This navigation process continues until the 
user finds all the citations she is interested in. In order to 
define a cost model, we focus on a simplification of the 
general navigation model, which we call TOPDOWN, 
where only EXPAND, SHOWRESULTS. 
 

VI. COMPLEXITY RESULTS 
To prove that the problem of selecting the optimal 

valid Edge Cut for a given tree is NP-Hard, where 
“optimal” means minimize the user navigation cost 
according to the navigation model of Section, we prove that 
the problem is Incomplete for a simplified navigation model, 
which we refer to as TOPDOWN-EXHAUSTIVE and is a 
special case of the TOPDOWN model. 

Hence, the duplicates are the reason that the 
problem is NP-complete for TOPDOWN-EXHAUSTIVE, 
because we need to maximize the number of duplicates 
within the created sub trees, and at the same time create a 
relatively small number of component sub trees. Note that 
even for a given �, the problem of selecting the best Edge 
Cut is NP-hard 

 
 

 Algorithm 
Processing 
Time 
(Minute) 

Accuracy 
(%) 

Unused 
Fields 

Area 
Under 
Curve 

1 K-Means <1 80 6 0.93 

2 Clustering <2 85 3 0.75 

3 
Opt Edge 
Cut 

<3 75 5 0.76 

4 
K-
Partition 

<2 80 4 0.85 

5 Apriori <1 92 8 0.95 

6 SVM <1 90 7 0.90 

Table 1 Comparative study of Algorithms 
Presently the algorithms which are using in the medical 
database searching have been providing large amount of the 
data. By using the Apriori Algorithm we can provide the 
accuracy and efficiency for the query results. The Apriori 
uses small data sets for the information retrieval for the 
query results which user searches. 
 

VIII. CONCLUSIONS AND FUTURE WORK 
The search results from the search engine which 

gives the Efficiency and accuracy for the query user 
searches. The search results provide the relevant data for 
the user. Performance of retrieving trustworthy data is also 
improved.. The future work will be providing better 
optimization by using other techniques in data mining 
which will provide high quality to the data in database. 
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