
Effective Navigation of Query Results Using
Apriori Algorithm

Tagore Kumar Tummapudi, Uma M

Department of Software Engineering, S.R.M. University
Chennai, India

Abstract- Search queries on biomedical databases, often return
a large number of results, only some part of data is relevant to
the user. Results categorization and ranking for biomedical
databases is the focus of this work. The general way to
organize biomedical data results is according to the MeSH
annotations. MeSH is used by medical database for
comprehensive searching of the query results. To alleviate the
information overload problem Ranking and Categorization
can be combined. We present the BioNav system, a novel
search interface that enables the user to navigate large
number of query results by organizing them using the MeSH
concept hierarchy. The efficiency of the results fetched by the
user can be improved by using Data Mining Algorithms.
Presently, few algorithms are being considered to provide the
data to the fetched queries. A new approach for evaluating the
relevant information for the query is done by Apriori
Algorithm. Apriori gives the relevant information to the user
by which the user can have easy way to access the information
needed.

Index Terms – MeSH, BioNav, efficient results , effectiveness

I. INTRODUCTION
Data mining is extraction of data which is useful

and it is extracted from different types of databases like
biomedical, web, domain specific databases, etc. Ranking
and Categorization on extracted query results helps the user
to fetch quality data from the database, helps in increasing
efficiency of the database. A user might consider the
effectiveness for a piece of information appropriate for one
task but not sufficient for another task. Accuracy is
subjective, as a second less quality concerned user might
consider the quality of the same piece of information
appropriate for both tasks. Which quality dimensions are
relevant and which levels of quality are required for each
dimension is determined by the specific task .The
biomedical database, on which the search engine operates,
contains over 18 million citations.

The user submits an initially broad keyword- based
query that typically returns a large number of results with
concept hierarchies associated with MeSH concept as
hierarchy. Biologists, chemists, medical and health
scientists and researchers will search their data from their
domain literature which need to be efficient and accurate.
For keyword search system will use citation id which will
be annotated with concept hierarchy [1].

The efficiency of the search results from the search
engines varies as information providers have different
levels of knowledge and different intentions. Users of query
based systems are therefore confronted with the
increasingly difficult task of selecting the efficient results

from the vast amount of web information the can b accepted.
The web search helps in the resulting of the efficient and
accurate result.

In order to optimize, the system uses concept
hierarchies for navigation of query results and opt edge cut
algorithm to minimize the cost and heuristic edge cut
algorithm to increase the efficiency of query navigation in
the biomedical database. The combination of both ranking
and categorization will improve the efficiency and
effectiveness of the query results. By using Apriori
algorithm the efficiency will be increased resulting in the
accurate result. It increases the performance in retrieving
efficient query results. Quality is provided information and
ratings of the website [9]. This will increase efficiency and
provide effectiveness, time saving and reduce cost of search
and provides to get expected trusted results.
A. Optimization of Search query Results:

Optimizing of the query results fetched by the user
when a query is placed on the database is done by different
techniques using ranking and categorization. Ranking is
done based on citation count, citation relevance, and by date.
Categorization is done by using concept hierarchies,
navigation tree. Partitioning is used for categorization and
the k partitioning is the linear partitioning method that is
done based on the weight of the node in the tree i.e.,
navigation tree and the active tree is generated where the
clustering is done and the dynamic pruning is also done to
save the time and the cost of query processing. Based on k
value the partitioning is done with the less number of k sub
groups that is less than the more weight of the tree.

The clustering is the technique which is used in
dividing the data into subsets i.e., categorizing the results.
The data can be supervised or unsupervised data i.e.,
training set are already defined or training sets are not
defined previously, for clustering or grouping of data the k
value or the number of the sets should be known at the
starting of the clustering or grouping is to be done .
The k means clustering is done based on mean distance for
partitioning medians clustering is based on median distance
and k medics clustering are four different techniques used
for clustering the data.

II. FRAMEWORK AND BIONAV OVERVIEW

The concept hierarchy is the starting point of the
framework and is defined as follows.
Definition 1 (Concept Hierarchy): A Concept Hierarchy is
a labeled tree consisting of a set of concept nodes, a set of
edges and is rooted at node . Each node has a label and a
unique identifier id. According to the semantics of the

Tagore Kumar Tummapudi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1952-1955

www.ijcsit.com 1952

MeSH concept hierarchy, the label of a child concept node
is more specific than the one of its parent. This also holds
for most concept hierarchies.

Once the user issues a keyword query,
PubMed−BioNav uses the Entrez Programming Utilities
(eUtils) −returns a list of citations, each associated with
several MeSH concepts.

BioNav reduces the size of the initial navigation
tree by removing the nodes with empty results lists,
ancestor/descendant relationships are being preserved. The
resulting structure is defined as follows.
Definition 2 (Navigation Tree): A Navigation Tree is the
maximum embedding of an initial navigation tree such that
no node is labeled with an empty results list, excluding the
root (in order to maintain the tree structure and avoid the
creation of a duplication. The maximum embedding of the
initial navigation tree is recursively computed in a single
depth-first left-to-right traversal. If a node has an empty
results list , then replace with its children node.

The above procedure reduces the size of the initial
navigation tree, but the structure is still too big (3,940 nodes
for query “prothymosin”) to simply display it to the user or
let her navigate it, especially if her query is of exploratory
nature.

BioNav minimizes the user’s effort to reach the
desired citations in the navigation tree by expanding in a
way that minimizes the expected overall user navigation
cost.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

The BioNav system architecture is shown in Fig. 7.
There are more than 48,000 concept nodes in the hierarchy.
The architecture results in the efficient and accurate results
based on the query processing and query optimization.
From this architecture, the query is processed from the
BioNav web interface.

Fig. 7 BioNav System Architecture

Then, the BioNav database is populated with the
associations of the MEDLINE citations to MeSH concepts.
These associations are not directly provided by the Entrez
Programming Utilities (eUtils), so we had to implement the
following method to infer these associations. For each
concept in the MeSH hierarchy, we issued a query on
PubMed using the concept as the keyword. For each
citation ID in the query result, we added a tuple concept,
citationID � to a table in the BioNav database.
Alternatively, we could determine the associations by using
the MeSH concepts that each citation is annotated with in
the MEDLINE database. This information is available
through eUtils. In this case though, the navigation trees of
BioNav would not be very informative, since each citation
is annotated with 20 concepts on average in MEDLINE,
while the PubMed indexing associates each citation with
approximately 90 concepts on average (and include the 20
from MEDLINE.) restrictions on the number of queries that
can be executed within a certain period of time, it took
almost 20 days to collect all the � concept, citationID
tuples. In the end, there were almost 740 million such tuples.
To improve the selection queries on this table, we de-
normalized it by concatenating all concepts associated with
each citation into a comma-separated list, that is:
Citation Id, Conpcet1, Concept 2

On-Line Operation Upon receiving a keyword
query from the user, BioNav executes the same query
against the MEDLINE database and retrieves only the IDs
(PubMed Identifiers) of the citations in the query result.
This is done using the ESearch utility of the Entrez
Programming Utilities (eUtils).

IV. APRIORI ALGORITHM:

We can compute the optimal cost by recursively
enumerating all possible sequences of valid Edge Cuts,
starting from the root and reaching every concept in the
navigation tree, computing the cost for each step and taking
the minimum. However, this algorithm is also prohibitively
expensive. Instead we propose an alternative algorithm
Apriori Algorithm that makes use of the dynamic
programming technique to reduce the computation cost.
Apriori Algorithm is mainly used for the providing the
efficient and accurate result.
Algorithm Used

 Apriori Algorithm Pseudo code

Procedure Apriori (T, minSupport)
{
//T is the database and minSupport is the minimum
support
L1= {frequent items};
for (k= 2; Lk-1!=Φ; k++)
{
Ck= candidates generated from Lk-1
//that is Cartesian product Lk-1 x Lk-1 and
eliminating any k-1 size itemset that is not
//frequent
for each transaction t in database do{

Tagore Kumar Tummapudi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1952-1955

www.ijcsit.com 1953

#increment the count of all candidates in Ck that
are contained in t
Lk = candidates in Ck with minSupport
}//end for each
}//end for
return UkLk;
}

Explanation
Support of an Item Set
Let S be an item set and T the multiset of all transactions
under consideration. Then the absolute support (or simply
the support) of the item set S is the number of transactions
in T that contain S. Likewise, the relative supportof S is
the fraction (or percentage) of the transactions in T which
contain S.
More formally, let S be an item set and U = { X∈T | S⊆t }
the bag/multiset of all transactions in T that have S as a
subset (i.e. contain all of the items in S and possibly some
others). Then
suppabs(S) = |U| = |{ X∈T | S⊆t }|
is the absolute support of S and
supprel(S) = (|U| / |T|) *100%
is the relative support of S. Here |U| and |T| are the number
of elements in U and T, respectively.
The goal of frequent item set mining is to find all item sets
(that is, all subsets of the item base) that occur in the given
bag/multiset of transactions with at least a user-
specified minimum support suppmin. Such item sets are
calledfrequent item sets.
The default value for the minimum support in my Apriori
program is 10% (the percentage indicates implicitly that it
refers to relative support). This value can be changed with
the option -s. Note that the argument to this option is
interpreted as a percentage if it is positive, but if it is
negative, it is interpreted as an absolute number (number of
transactions) rather than a percentage. That is, -s20 means a
minimum relative support of 20%, while -s-20means a
minimum absolute support of 20 transactions.
Confidence of an Association Rule
If we search for association rules, we do not want just any
association rules, but "good" association rules. To measure
the quality of association rules, the inventors of the Apriori
algorithm, introduced the confidence of a rule. The
confidence of an association rule R = "X → Y" (with item
sets X and Y) is the support of the set of all items that
appear in the rule (here: the support of S = X ∪ Y) divided
by the support of the antecedent (also called "if-part" or
"body") of the rule (here X). That is,

conf(R) =
supp(X ∪ Y)

supp(X)

(Note that it does not matter whether the confidence is
computed from the absolute or the relative support of an
item set, as long as the same support type is used in both the
numerator and the denominator of the fraction.)
More intuitively, the confidence of a rule is the number of
cases in which the rule is correct relative to the number of
cases in which it is applicable. If the rule is applicable, it
says that the customer can be expected to buy cheese. But

he/she may or may not buy cheese, that is, the rule may or
may not be correct (for this customer). Naturally, we are
interested in how good the prediction of the rule is, that is,
how often its prediction that the customer buys cheese is
correct. The rule confidence measures this: it states the
percentage of cases in which the rule is correct. It states this
percentage relative to the number of cases in which the
antecedent holds, since these are the cases in which the rule
makes a prediction that can be true or false. If the
antecedent does not hold, then the rule does not make any
prediction, so these cases are excluded.
Rules are reported as association rules if their confidence
reaches or exceeds a given lower limit (minimum
confidence; to be specified by a user). That is, we look for
rules that have a high probability of being true: we look for
"good" rules, which make correct (or very often correct)
predictions. My Apriori program always uses a minimum
confidence to select association rules. The default value for
the minimum confidence is 80%. This value can be changed
with the option -c. (Note that for the minimum confidence,
the argument is always interpreted as a percentage.
Negative values cause an error message, because there is no
"absolute confidence".)
In addition to the rule confidence, my Apriori program lets
you select from several other (additional) rule evaluation
measures, which are explained below, but it will also use
rule confidence. If you want to rely entirely on some other
measure, you can do so by setting the minimal rule
confidence to zero. (Attention: If you have a large number
of items, setting the minimal rule confidence to zero can
result in very high memory consumption. Therefore: use
this possibility with a lot of care, if at all.)
Support of an Association Rule
The support of association rules may cause some confusion,
because I use this term in a different way do. For them, the
support of an association rule "A and B → C" is the support
of the set S = { A, B, C }. This may be fine if rule
confidence is the only evaluation measure, but it causes
problems if some other measure is used. For these other
measures it is often much more appropriate to call the
support of the antecedent of the association rule, that is, the
support of X = { A, B } in the example above, the support
of the association rule.
The rule support can be used to filter association rules by
stating a lower bound for the support of a rule (minimum
support). This is equivalent to saying that you are interested
only in such rules that have a large enough statistical basis
(since my Apriori program uses the term "support" in my
interpretation and not in the one used by The default value
for this support limit is 10%. It can be changed with the
option -s. Note that the argument, if positive, is interpreted
as a percentage. If, however, the given argument is negative,
it is interpreted as an absolute number (number of
transactions) rather than a percentage.
The minimum support is combined with the minimum
confidence to filter association rules. That is, my Apriori
program generates only association rules, the confidence of
which is greater than or equal to the minimum
confidenceand the support of which is greater than or equal
to the minimum support.

Tagore Kumar Tummapudi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1952-1955

www.ijcsit.com 1954

V. NAVIGATION AND COST MODEL
The navigation model of BioNav is formally

defined in this section. Then the navigation cost model is
presented, which is used to devise and evaluate our
algorithms in later sections. Navigation Model After the
user issues a keyword query, BioNav initiates a navigation
by constructing the initial active tree (which has a single
component tree rooted at the Mesh root) and displaying its
root to the user. Subsequently, the user navigates the tree by
performing one of the following actions on a given
component subtree rooted at concept node:

1. EXPAND: The user clicks on the”>>>” hyperlink next to
node and causes an Edge Cut operation to be performed on
it, thus revealing a new set of concept nodes.
2. SHOWRESULTS: By performing this action, the user
sees the results list of citations attached to the component
subtree.
3. IGNORE: The user examines the label of concept node,
ignores it as unimportant and moves on to the next revealed
concept.
4. BACKTRACK: The user decides to undo the last Edge
Cut operation. This navigation process continues until the
user finds all the citations she is interested in. In order to
define a cost model, we focus on a simplification of the
general navigation model, which we call TOPDOWN,
where only EXPAND, SHOWRESULTS.

VI. COMPLEXITY RESULTS
To prove that the problem of selecting the optimal

valid Edge Cut for a given tree is NP-Hard, where
“optimal” means minimize the user navigation cost
according to the navigation model of Section, we prove that
the problem is Incomplete for a simplified navigation model,
which we refer to as TOPDOWN-EXHAUSTIVE and is a
special case of the TOPDOWN model.

Hence, the duplicates are the reason that the
problem is NP-complete for TOPDOWN-EXHAUSTIVE,
because we need to maximize the number of duplicates
within the created sub trees, and at the same time create a
relatively small number of component sub trees. Note that
even for a given �, the problem of selecting the best Edge
Cut is NP-hard

 Algorithm
Processing
Time
(Minute)

Accuracy
(%)

Unused
Fields

Area
Under
Curve

1 K-Means <1 80 6 0.93

2 Clustering <2 85 3 0.75

3
Opt Edge
Cut

<3 75 5 0.76

4
K-
Partition

<2 80 4 0.85

5 Apriori <1 92 8 0.95

6 SVM <1 90 7 0.90

Table 1 Comparative study of Algorithms
Presently the algorithms which are using in the medical
database searching have been providing large amount of the
data. By using the Apriori Algorithm we can provide the
accuracy and efficiency for the query results. The Apriori
uses small data sets for the information retrieval for the
query results which user searches.

VIII. CONCLUSIONS AND FUTURE WORK
The search results from the search engine which

gives the Efficiency and accuracy for the query user
searches. The search results provide the relevant data for
the user. Performance of retrieving trustworthy data is also
improved.. The future work will be providing better
optimization by using other techniques in data mining
which will provide high quality to the data in database.

REFERENCES

[1]. Abhijith Kashyap, Vagelis Hristidis, Michalis Petropoulos, and
Sotiria Tavoulari, “Effective Navigation of Query Results Based on
Concept Hierarchies”, IEEE TRANSACTIONS ON KNOWLEDGE
AND DATA ENGINEERING, VOL. 23, NO. 4, APRIL 2011.

[2]. Fie Wang, Noah Lee, Jianying Hu, Jimeng Sun, Shahram Ebadollahi,
Andrew F.Laine ,”A Framework For Mining Signatures From Event
Sequences And its Applications In Health Care System”. IEEE
Transactions on Knowledge and Data Engineering, 2013.

[3]. J.S. Agarwal, S. Chaudhuri, G. Das, and A.Gionis, “Automaed
Ranking of Database Query Results”, Proc. First Biennial Conf.
Innovative Data Systems Research, 2003.

[4]. K.Chakrabarti, S.Chaudhuri and S.W.Hwang, “Automatic
Categorization of Query Results”, Proc.ACM SIGMOD, pp.755-766,
2004.

[5]. Karthikeyan, Saravanan, Vanitha, High Dimensional Data Clustering
Using Fast Cluster Based Feature Selection, Int. Journal of
Engineering Research and Applications, ISSN: 2248-9622, Vo.4,
Issue 3, March 2014, pg.65-71.

[6]. T.Zhang, R. Ramakrishnan and M Livny, “BIRCH: An Efficient
Data Clustering Method for Very Large Databases”, Proc. ACM
SIGMOD, pp.103-114, 1996.

[7]. V.Hristidis and Y.Papakonstantinou, “DISCOVER: Keyword Search
in Relational Databases”, Proc.Int`l Cong.Very Large Data Bases
(VLDB), 2002.

[8]. Zheng Lu, Hongyuan Zha, Xiaokang Yang, Weiyao Lin, Member,
and Zhaohui Zheng, A New Algorithm for Inferring User Search
Goals with Feedback Sessions, IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING,2013.

[9]. Zhixian Zhang, Kenny Q. Zhu , Haixun Wang, Hongsong Li ,
Automatic Extraction of Top-k Lists from the Web, IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA
ENGINEERING YEAR 2013.

Tagore Kumar Tummapudi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1952-1955

www.ijcsit.com 1955

